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Docosahexaenoic acid (DHA) is an omega-3 fatty acid that is
highly concentrated in CNS tissues. Although breast milk con-
tains the fatty acids DHA and arachidonic acid, infant formulas
marketed in North America do not contain these nutrients. The
potential deleterious effects of rearing infants with formulas
devoid of these nutrients was assessed by comparing nursery-
reared rhesus macaque infants (Macaca mulatta) fed standard
formula with infants fed standard formula supplemented with
physiologically relevant concentrations of DHA (1.0%) and ar-
achidonic acid (1.0%). Neurobehavioral assessments were con-
ducted on d 7, 14, 21, and 30 of life using blinded raters. The
30-min assessment consisted of 45 test items measuring orient-
ing, temperament, reflex capabilities, and motor skills. Plasma
concentrations of DHA in standard formula-fed infants were
significantly lower than those fed supplemented formula or
mother-raised (breast-fed) infants; however, infants fed the sup-
plemented formula exhibited higher arachidonic acid levels than
either mother-reared infants or infants fed standard formula.
Infant monkeys fed the supplemented formula exhibited stronger

orienting and motor skills than infants fed the standard formula,
with the differences most pronounced during d 7 and 14. This
pattern suggests an earlier maturation of specific visual and
motor abilities in the supplemented infants. Supplementation did
not affect measures of activity or state control, indicating no
effect on temperament. These data support the assertion that
preformed DHA and arachidonic acid in infant formulas are
required for optimal development. (Pediatr Res 51: 273–281,
2002)

Abbreviations
DHA, docosahexaenoic acid
AA, arachidonic acid
BHT, butylated hydroxytoluene
LC-PUFA, long-chain polyunsaturated fatty acid
NBAS, Neonatal Behavioral Assessment Scale
NICHD, National Institute of Child Health and Human
Development
NIAAA, National Institute on Alcohol Abuse and Alcoholism

There has been great interest in understanding the role of the
long-chain fatty acids in promoting optimal cognitive and
neurologic development. Although these nutrients are present
in all mammalian breast milks, commercially available infant
formulas do not support the tissue requirement for these nutri-
ents in developing infants (1–4). The LC-PUFAs AA (20:4
n-6) and DHA (22:6 n-3) are selectively concentrated in the
cellular membranes of neural and retinal tissues (5). Although
human infants are able to synthesize AA and DHA from the
precursor molecules linoleic acid (18:2 n-6) and �-linolenic

acid (18:3 n-3) (6–8), the rate of synthesis appears to be
inadequate to meet the developmental demands of infants (7).
In addition, uptake of DHA into brain tissue is more efficient
than formation of DHA from �-linolenic acid (9). Human
breast milk from women in all countries studied delivers both
preformed AA and DHA to the developing infant (10). In
contrast, commercially available infant formulas in the United
States are virtually devoid of DHA and AA but contain the
precursor fatty acids 18:2 n6 and 18:3 n3 (11). Thus, formula-
fed infants exhibit lower levels of AA and DHA in blood and
brain tissues relative to their breast-fed counterparts [blood
(12, 13); brain (1–4)]. These findings have prompted efforts to
determine the physiologic benefits of LC-PUFA, particularly
DHA, in infant nutrition and development.

Several studies have shown that breast-fed infants exhibit
superior performance relative to formula-fed infants on visual
task performance (14), psychomotor development (15), intel-
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lectual capability (16, 17), and achievement scores (18). How-
ever, it is difficult to isolate a deficiency of DHA and AA in
formulas as the causal variables in these studies. Comparisons
between breast-fed and formula-fed infants include a large
number of confounding variables including absence of other
nutrients and biologically active factors in formula (19), and
differences in maternal factors including socioeconomic status,
education, and maternal infant interactions (20, 21). In con-
trast, randomized supplementation trials have been able to
isolate AA and DHA as critical variables. These trials have
demonstrated that LC-PUFA supplementation can support
plasma concentrations of AA and DHA at levels that are
comparable to those observed in breast-fed infants and higher
than standard formula-fed infants (11, 22, 23).

Several randomized clinical trials have also provided evi-
dence that LC-PUFA supplementation improves cognitive de-
velopment and visual function. Studies of both preterm and
term infants have reported improvements in mental develop-
mental scores assessed by the Bayley Scales of Infant Devel-
opment [(24, 25) term infants only; however, findings of no
effects of supplementation have also been reported, see (26)],
the Brunet-Lezine Test (27), the Infant Planning Test (28), and
shorter look duration to novel stimuli (29). Several studies
have also demonstrated that these improvements persist be-
yond the period of supplementation (25, 28, 30) although some
do not (31). Improvements in visual acuity and function result-
ing from LC- PUFA supplementation in both term and preterm
infants have also been described (14, 23, 32, 33) and have been
supported by meta-analyses (34, 35). Outcome measures used
to assess cognitive development and visual acuity in infants
often have high inherent variability (36, 37). Thus, the studies
that have described no differences (38, 39) must be carefully
examined for adequate power, control of the precursor fatty
acid composition, and environmental variances of the study
populations (36, 40). Finally, the concentrations of DHA and
AA used for supplementation in the negative studies should be
evaluated to determine whether they were adequate (36, 40).

One particularly valuable approach that reduces variability
in the study population has been the use of nonhuman primates.
Among monkeys deprived both pre- and postnatally of LC-
PUFAs, dietary depletion of n-3 fatty acids causes lower DHA
levels in both retina and brain (41). These n-3 fatty acid–
deficient animals exhibited deficiencies in visual physiology
(41, 42), as well as behavioral effects. The n-3 fatty acid–
deficient monkeys exhibited polydipsia, polyuria, and more
locomotor stereotypies compared with control animals (43,
44). Most previous nonhuman primate models have invoked
n-3 fatty acid dietary deficiency throughout the life span,
including during pregnancy. In contrast, we conducted this
study using a controlled animal model that more closely re-
sembles patterns of LC-PUFA intake in formula-fed human
infants; prenatal LC-PUFA sufficiency with postnatal LC-
PUFA deficiency. In this study we provided a higher amount of
supplementation than any prior human infant study [i.e. 0.36
wt % DHA and 0.72 wt % AA (25)]. By supplementing the
formula with 0.9 wt % DHA and 1.0 wt % AA, we were able
to provide a level of supplementation that is physiologically
relevant and ecologically valid. For example, this level of

supplementation provides DHA and AA levels similar to those
found in Japanese mothers’ milk (45), and to DHA levels in
macaque colostrum (46). Because our groups of animals were
small, and the dependent measures had high variability, we
endeavored to use concentrations of DHA and AA in the high
end of the range of concentrations found in humans. By
isolating DHA and AA as variables in two formulas and by
rigorously controlling these environmental and nutritional con-
ditions, we are able to test the hypothesis that a DHA and AA
insufficiency occurring selectively during the postnatal period
would affect neonatal behavioral outcomes.

We used a neurodevelopmental battery specifically designed
to test nonhuman primate infants (47) to assess the effects of
formula supplementation on neonatal behavioral development.
The instrument used, a nonhuman primate adaptation of the
NBAS (48), is sensitive to a variety of intrinsic and environ-
mental factors in primate neonates (47, 49–53). The advan-
tages of studying nonhuman primate infants include the simi-
larity of physiologic and basic behavioral characteristics to
human infants, the ease of access to subjects for repeated
testing, and the close relatedness to humans. In addition,
environmental conditions were strictly controlled in the nurs-
ery, to eliminate confounding factors such as maternal diet or
infant treatment. To the best of our knowledge, this is the first
study comparing LC-PUFA-supplemented and -unsupple-
mented formula-fed infants on NBAS outcomes.

METHODS

Subjects

Twenty-eight nursery-reared rhesus macaque infants (Ma-
caca mulatta) served as study subjects. The study was con-
ducted using three age cohorts for 3 consecutive y. Cohorts 1
and 2 each contained eight infants; cohort 3 consisted of 12
infants. In each cohort, half the infants were provided standard
infant formula (described below), and half were fed the stan-
dard formula supplemented with a DHA/AA blend. The study
was conducted in accordance with regulations governing the
care and use of laboratory animals, and was approved by the
NICHD and NIAAA Animal Care and Use Committees.

The sample size of 28 infants was derived based on the
following considerations. We reviewed previous data from 97
nursery-reared infants from six birth cohorts (1991–1996) to
obtain SD measures on each day for each of the dependent
measures. The standard deviations for each cluster, averaged
across test days, ranged from 0.31 to 0.58. In a previous study
examining genotypic differences on these neonatal assessment
outcomes (52), for two of the dependent measures a mean
difference of 0.44 was obtained in each case. Although there
were no mean differences between genotype groups for the
other two dependent measures, for the purpose of this study we
assumed a potential mean difference of 0.44 for these measures
as well. With an expected power of 80%, an alpha error of
0.05, and an SD of 0.58 (the largest SD of the four dependent
measures from the historical data), the projected sample size to
detect a statistically significant effect would be 27 animals.
Because we rear our nursery animals in groups of four we
could have elected to include either 24 or 28 animals in the
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study. Concerns about the potential genetic variability resulting
from using animals from two facilities prompted us to include
the larger number of monkeys in the study. This sample size is
comparable to those used in prior studies using this neonatal
assessment in between-group comparisons to assess genetic
and environmental effects on behavior [e.g. 23 infants (49); 42
infants (52)].

Housing

Infants were separated from their mothers at birth and reared
in a neonatal nursery according to previously published pro-
cedures (54). From d 1 through 14 of age, animals were
individually housed in 51 � 38 � 43-cm plastic cages. Each
cage contained a 25-cm-high inanimate surrogate mother com-
posed of a 16.5-cm-circumference polypropylene cylinder an-
chored to an 11.5-cm-wide circular metal base by a flexible
metal component that allowed the surrogate to rock. The
surrogate mother was covered with an inner layer consisting of
an electric heating pad, and the heating pad was covered with
fleece fabric. Loose pieces of fleece fabric, which was typically
used as a blanket, covered the floor of the cage. The internal
temperature of the cage was maintained at approximately
27°C. Infants could see and hear, but not physically contact,
other infants. At 15 d of age, the heating pads were removed
and the infants were moved with their fleece and surrogates
into individual wire mesh cages measuring 64 � 61 � 76 cm.
As in the earlier housing condition, animals were in visual,
auditory, and olfactory, but not tactile, contact with other
infants. At approximately d 37 of age, animals entered social
groups with similar-aged peers. Lights were on in the nursery
from 0700 h to 2100 h. Room temperature was maintained
between 22° and 26°C, and humidity was maintained at 50 to
55%.

Feeding

The standard formula was composed of a 1:1 mixture of
Similac (Ross Laboratories, Columbus, OH, U.S.A.) and a
commercial monkey formula (Primilac, Bio-Serv, Inc., French-
town, NJ, U.S.A.). The supplemented formula consisted of 1 L
of standard formula with 1 mL of DHA/AA (46% DHASCO
and 54% ARASCO, Martek Biosciences Co., Columbia, MD,
U.S.A.) blended in with a hand mixer. Supplemented formula
was mixed as needed, at least once per day. Animals were
hand-fed until they were old enough to independently feed them-
selves (usually by d 3 of life). Between 0800 h and 2000 h, 50 mL
of formula was provided, and formula intake was assessed at 2-h
intervals. Animals were provided formula until 6 mo of age. Small
pieces of monkey chow (Purina, Allied Mills, Chicago, IL,
U.S.A.) were provided daily to the monkeys from d 14. Fatty acid
composition of monkey chow is provided in Table 1. Chow
contained DHA and AA at higher concentrations than formula,
although well below rhesus milk. However, it is unlikely that
chow consumption was a significant factor in the study of 7- to
30-d-old infants, as nursery infants rarely consume monkey chow
at this age. There is no compelling a priori reason to hypothesize
differential chow consumption by the older infants in the different
formula feeding conditions.

AA and DHA Content of Formula/Milk

Formula samples were collected for measurement of LC-
PUFA levels, and, for comparison purposes, samples of rhesus
breast milk were also obtained. Supplemented formula (n � 7)
and standard (n � 7) formulas were sampled on three separate
occasions. Samples were removed directly from the refriger-
ated containers holding the premixed, ready-for-consumption
formulas. Samples of rhesus monkey milk were collected from
four females from other research protocols at the Laboratory of
Comparative Ethology. All mothers were nursing infants at the
time of sample collection; ages of infants ranged from 2 to 6
mo. Mothers were anesthetized with 15 mg/kg ketamine hy-
drochloride intramuscularly; samples were collected by gently
manually expressing approximately 2 mL of milk into a plastic
vial. Milk and formula samples were stored at �70°C until
analysis.

After collection throughout the study, the supplemented
formula contained the highest concentration of AA of all tested
samples (1.0 � 0.4 wt%); rhesus breast milk contained inter-
mediate levels (0.2 � 0.1 wt%), and standard formula con-
tained very small amounts of AA (0.04 � 0.006 wt%). These
three groups differed (H � 20.8, p � 0.0001) with Kruskal-
Wallis testing. DHA was undetectable in standard formula;
supplemented formula contained 1.0 � 0.4 wt% DHA and
mothers’ milk 0.4 � 0.1 wt% DHA. The DHA weight percent
differed when comparing mothers’ milk and standard formula
(U � 88.0; p � 0.0003) using the Mann-Whitney U test. The
concentration of total fatty acids was higher in breast milk
(61.7 � 26.1 mg/mL) compared with both standard (16.5 � 2.5
mg/mL, U � 87.9, p � 0.0004) and supplemented formulas
(16.7 � 2.5 mg/mL, U � 87.9, p � 0.0004). Table 2 contains
a detailed description of fatty acid contents of breast milk,
supplemented formula, and unsupplemented formula.

Differences among Replications

Procedures were identical among replications with the fol-
lowing exceptions: in the first year of the study, subjects were

Table 1. Fatty acid composition of monkey chow

Total fatty acids 12,938
Saturated

14:0 732
16:0 2,336
18:0 1,026

Monounsaturated
14:1 18
16:1 201
18:1n9 3,612
18:1n7 237

Polyunsaturated
18:2n6 4,275
18:3n6 3
20:3n6 6
20:4n6 16
22:4n6 5
22:5n6 3
18:3n3 256
20:5n3 41
22:6n3 35

Results are in micrograms per gram (n � 3).
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obtained opportunistically and it was not possible to match
groups for sex or birth weight. The standard-formula group in
cohort 1 contained two males and two females; the supple-
mented-formula group consisted of three males and one fe-
male. In the second and third replications a larger subject pool
was available, and animals were matched for sex and birth
weight among groups. Cohorts 2 and 3 therefore contained
equal numbers of males and females in the standard-formula
and supplemented-formula conditions. Animals in the first
cohort were born at the Laboratory of Comparative Ethology
(NICHD) breeding facility in Poolesville, MD, U.S.A., and the
animals in cohorts 2 and 3 were obtained from Laboratory
Animal Breeders Services (LABS, Yemassee, SC, U.S.A.).

Neonatal Assessment

A 30-min developmental assessment battery was adminis-
tered on d 7, 14, 21, and 30 of life. This test was derived from
the Brazelton Neonatal Assessment Scale used in human new-
borns (48) and has been described in detail elsewhere (47, 49).
Raters were trained to a reliability criterion of 0.90 before
collecting data (Pearson product-moment correlation) accord-
ing to a rigorous training protocol (55). The author of the
assessment directly trained M.C. to a criterion of reliability
exceeding 0.90; M.C. then trained additional raters. All indi-
viduals were highly trained, performing the assessment reliably
on both mother- and nursery-reared infants for more than 1 y
before the onset of this study. Two individuals who were blind
to the experimental condition of the animals conducted the

majority of the assessments (99 of 111 assessments; 89%).
Two additional observers who were not blind to the experi-
mental treatment conducted 12 assessments: nine in cohort 1
and three in cohort 2. This circumstance was unavoidable
owing to the necessity to obtain all assessments on the appro-
priate day of life, and the resulting inability of the blind
observers to perform all the required assessments on any given
day. The nonblinded observers were unaware of the experi-
mental hypotheses being tested, and performed seven assess-
ments on control infants and five assessments on supplemented
infants. Assessment scores from blinded and nonblinded ob-
servers did not differ significantly for either feeding condition
or any of the clusters. One supplemented-formula infant in
cohort 1 was not tested on d 21 owing to scheduling conflicts.

The test was administered between 1100 h and 1300 h. Test
items were presented in invariant order following a predeter-
mined sequence. Initially, orientation abilities and attention to
visual and auditory stimuli were assessed. This was followed
by measurement of a variety of reflex and sensorimotor func-
tions, including tactile responsiveness, postural adjustment
capabilities, and muscle tone. In addition, the response to a
brief challenge was assessed during a 6-min session in which
the animal was placed into a small cage (see above for descrip-
tion of the housing cage used during d 1–14). The test cage was
empty except for an absorbent liner pad and the stimulus used
for the visual orienting items. The cage was not unfamiliar for
the animals, but was devoid of comfort items such as blankets,
toys, surrogates, and bottles. The first minute of the 6-min
session was devoted to obtaining a count of emitted vocaliza-
tions; a 5-min focal behavioral observational period then en-
sued in which behavioral inactivity, fine and gross motor
activity, and coordination were assessed. Temperament char-
acteristics were rated after administration of the orienting and
neuromotor items, based on the infant’s behavior throughout
the test period. These measures included the tester’s impres-
sions of the animal’s fearfulness, tendency to struggle, conso-
lability, irritability, ability to self-soothe, cuddliness, and over-
all state of arousal. With the exception of 60-s vocalization
count, all items were scored on a scale of 0–2, with scores of
0.5 and 1.5 allowable. As in previous studies (49), some of the
individual test items were aggregated into four clusters repre-
senting orientation, state control, motor maturity, and activity.
Cluster constituents are listed in Table 3.

Blood Collection

Blood samples were collected for determination of plasma
DHA and AA levels. Samples were obtained from all study
infants at 2, 4, 8, 12, 16, and 20 wk of age. For comparison
purposes, equivalent samples were also collected from 14
mother-reared (breast-fed) infants from the breeding colony:
four mother-reared infants each were sampled in y 1 and 2, and
six infants were sampled in y 3, of the study. Mother-reared
infants were matched to study infants on sex of infant and birth
date of infant, as closely as possible. All samples were col-
lected between 1130 h and 1430 h. Animals were immobilized
with ketamine hydrochloride (intramuscularly, 15 mg/kg) be-
fore sample collection. Two milliliters of blood was collected

Table 2. Fatty acid composition of breast milk, standard, and
supplemented infant formulas

Fatty acid
(wt%)

Standard formula
(n � 7)

Supplemented formula
(n � 7)

Breast milk
(n � 11)

8:0 1.9 � 0.1 1.8 � 0.05 3.2 � 1.0*†
10:0 1.6 � 0.03 1.6 � 0.03 4.1 � 1.5*†
12:0 13.6 � 1.4 12.7 � 0.9 1.2 � 0.5*†
14:0 5.9 � 0.6 6.2 � 1.4 1.5 � 0.3*†
16:0 11.5 � 0.8 11.8 � 2.2 13.4 � 10.7†
18:0 4.2 � 0.2 3.9 � 0.9 11.9 � 8.7*†
20:0 0.3 � 0.0 0.3 � 0.0 1.3 � 1.7
22:0 0.3 � 0.1 0.3 � 0.0 2.7 � 3.7
16:1 1.0 � 0.1 1.1 � 0.1 3.6 � 0.9*†
18:1n9 29.7 � 5.0 28.2 � 8.8 27.8 � 1.7
18:1n7 0.9 � 0.1 4.0 � 9.2 2.2 � 1.7
20:1n9 0.2 � 0.01 0.2 � 0.1 0.5 � 0.3*†
24:1n9 0.1 � 0.01 0.1 � 0.003 0.1 � 0.1
18:2n6 27.4 � 3.4 25.8 � 2.4 15.7 � 12.5
18:3n6 0.03 � 0.008 0.1 � 0.0† 0.04 � 0.04
20:2n6 ND ND 0.3 � 0.1*†
20:3n6 ND ND 0.3 � 0.1*†
20:4n6 0.04 � 0.006 1.0 � 0.4† 0.2 � 0.1*†
22:4n6 ND ND 0.1 � 0.04*†
22:5n6 ND ND 0.1 � 0.04*†
18:3n3 2.0 � 0.5 2.1 � 0.7 0.7 � 0.5*†
20:5n3 ND 0.1 � 0.1† 0.2 � 0.05*†
22:5n3 ND 0.02 � 0.01† 0.2 � 0.1*†
22:6n3 ND 1.0 � 0.4† 0.4 � 0.1*†

* p � 0.01 compared with supplemented formula.
† p � 0.01 compared with the standard formula.
All comparisons used Mann-Whitney nonparametric testing.
ND, not detected.
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from the femoral vein into an EDTA anticoagulant-treated
Vacutainer collection tube. After centrifugation, a 500-�L
aliquot of plasma was placed into a plastic vial and stored at
�70°C until assay.

Analysis of AA and DHA Content of Plasma and
Formula/Milk

Fatty acids were extracted from 100 �L of plasma using a
modification of the Folch method (56). Samples were aliquoted
into 2 mL of CHCl3, 1 mL of BHT-MeOH, and a known
quantity of 23:0 fatty acid as an internal standard. One milli-
liter of 0.2 M Na2HPO4 was added after a brief vortexing. The
samples were capped under nitrogen and vortexed again. After
centrifugation, the CHCl3 solvent layer was extracted and
placed under nitrogen stream. The extraction procedure was
repeated a second time with an additional 2 mL of CHCl3. The
two CHCl3 layers were combined and evaporated to dryness
under nitrogen. Samples were methylated with BF3-MeOH for
60 min (57). Gas chromatography was performed on the
methylated samples using a Hewlett Packard 5890 series II
with a flame ionization detector, an autosampler, and a DB-
FFAP capillary column (J &W Scientific, Folsom, CA,
U.S.A.), using previously described methods (58). Peaks were
identified using authentic standards (NuCheck Prep, MN,
U.S.A.). Fatty acids were quantified by comparison to peak
areas of the 23:0 internal standard. The BHT peak was selec-
tively excluded by adjusting peak integration variables.

Fatty acid compositions of milk and formula samples were
determined without extraction using direct transesterifica-
tion methods (59). All samples were appropriately protected
from UV light during storage and protected from oxidation
during analysis with the use of nitrogen blankets and cold
conditions. A 40-�L quantity of each milk or formula
sample was aliquoted into 2 mL of 4:1 methanol-hexane
solvent containing 50 �g/mL BHT and 10 �g of 23:0 fatty
acid internal standard. After addition of sample, tubes were
vortexed briefly and 200 �L of acetyl chloride reagent was
added slowly, over ice. Sample reaction mixtures were then
heated at 100°C for 60 min. After heating, the reaction
mixtures were neutralized with 5 mL of 6% K2CO3 buffer,
and the hexane layers were extracted for gas chromato-
graphic analysis. Gas chromatography was performed on the
methylated samples using the same equipment and methods
as the plasma fatty acid quantification procedures (see
above). The within run and between run coefficients of
variation were 0.3% and 1.0%, respectively.

Statistical Analysis

Milk and formulas. Comparison among breast milk and
formulas was conducted using nonparametric Mann-Whitney
U test, unpaired two-group comparisons, and Kruskal-Wallis
three-group comparisons.

Plasma samples. Initial univariate analyses of variance were
conducted with cohort and condition (control, supplemented,
mother-reared) as between-groups factors and time point (wk
2, wk 4) as a within-groups factor. Because there were some
missing data points owing to inability to collect sufficient blood
for assay, univariate ANOVAs, which compensate for missing
data, were conducted using the statistical program Super-
ANOVA (Abacus Concepts, Berkeley, CA, U.S.A.). Because
initial analyses revealed statistically significant effects of co-
hort for both AA (F2,31 � 74.79; p � 0.001) and DHA (F2,31

� 69.65; p � 0.001), additional analyses were conducted. AA
and DHA values were converted to standard scores within each
cohort; ANOVAs were then conducted on the standardized
scores.

Neonatal assessments. One male infant from cohort 3 was
removed from analyses because, even though he had been
allocated to the standard-formula group, he had not been
removed from his mother until d 3 postpartum. Therefore, all
analyses were conducted comparing 13 standard-formula in-
fants with 14 supplemented-formula infants. Mother-reared
comparison infants were not incorporated into these analyses,
as substantial rearing condition differences between mother-
and nursery-reared infants on the response to testing could
potentially confound the comparison with supplemented for-
mula–fed nursery-reared infants.

Data from each of the four clusters were analyzed sepa-
rately. Data were analyzed by three-way mixed design
ANOVAs with formula type (standard, supplemented) and
cohort (y 1, y 2, y 3) as between-group factors and test day
(d 7, d 14, d 21, d 30) as within-groups factors. The
statistical program SuperANOVA (Abacus Concepts) was
used for all analyses.

Table 3. Neonatal assessment item definitions

Item Definition

Orientation cluster
Visual orientation Eyes oriented toward toy (Mickey Mouse face)

held in four positions in infant’s periphery
Visual following Eyes following moving toy (same as above) in

horizontal and vertical directions
Duration of looking Examiner rating of length of looks on orienting

items
Attention Examiner rating of attention on orienting items

State control cluster
Irritability Amount of distress noted during the entire

examination
Consolability Ease of consoling infant following distress
Predominant state State of infant during examination
Struggle Amount of squirming during examination

Motor maturity cluster
Coordination Quality of motor activity rated during the

5-min observation period
Head posture prone Ability to hold head up when held in air prone
Head posture supine Ability to hold head up when held in air supine
Labyrinthian

righting
Realignment of head when body is tilted 45°

sideways
Response speed Examiner rating of speed of responding

Activity cluster
Passive Duration of time spent inactive during the

5-min observation period
Coordination Quality of motor activity rated during the

5-min observation period
Motor activity Observation of amount of motor activity during

the 5-min observation period
Spontaneous

locomotion
Quality of locomotion rated during the 5-min

observation period
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RESULTS

AA and DHA content of plasma. Analyses of plasma AA
and DHA levels converted into standardized scores within each
cohort demonstrated statistically significant effects of condition
(AA: F2,37 �12.45; p � 0.001; DHA: F2,37 � 61.35; p �
0.001). For AA, post hoc comparisons indicated that infants
fed supplemented formula exhibited higher plasma z-scored
AA values than mother-reared infants and infants fed standard
formula (p � 0.01 for both comparisons). Mother-reared in-
fants did not differ significantly from infants fed standard
formula. For DHA, mother-reared infants exhibited higher z
scores of plasma DHA than infants fed both formula types, and
supplemented formula–fed infants exhibited higher values than
standard formula–fed infants (p � 0.001 for all comparisons).
Plasma AA and DHA levels (expressed as raw values, micro-
grams per milliliter) in the three conditions are depicted in
Figures 1 and 2, respectively.

Neonatal assessment. There were statistically significant
main effects for group, with infants fed the supplemented
formula exhibiting higher scores than infants receiving the
standard formula on the motor maturity cluster (F1,21 � 11.83;
p � 0.01; Fig. 3) and on the orientation cluster (F1,21 � 5.10;
p � 0.05; Fig. 4). In addition, the analysis revealed a signifi-
cant interaction of group and test day for the motor maturity
cluster (F3,62 � 3.11; p � 0.05), which indicated that group
differences in motor maturity were most pronounced on test d
7 and 14. No group differences were detected on either the state
control (p � 0.38; Fig. 5) or activity (p � 0.51; Fig. 6) clusters.

As in previous findings (47), significant effects of test day
were obtained for the orientation cluster (F3,62 � 8.01; p �
0.01), the motor maturity cluster (F3,62 � 6.48; p � 0.01), and
the activity cluster (F3,62 � 9.55; p � 0.01). In all three
clusters, scores increased as the subjects matured. No effect of
test day was detected for the state control cluster.

Significant effects of cohort were demonstrated for the ori-
entation cluster (F2,21 � 11.60; p � 0.01) and for the motor

maturity cluster (F2,21 � 4.03; p � 0.05). In both cases, cohort
3 animals exhibited lower scores than either cohorts 1 or 2;
cohorts 1 and 2 did not significantly differ from each other.
However, significant group by cohort effects were not obtained
for either cluster. Cohort effects were not observed for either
the state control (p � 0.07) or activity (p � 0.61) clusters.
Table 4 depicts the cohort averages for each cluster.

DISCUSSION

Rhesus neonates consuming LC-PUFA–supplemented for-
mula obtained higher scores on motor maturity and orientation
items than infants receiving standard formula. Because these
findings were most pronounced during d 7 and 14 of life, and
because these abilities typically improve during the first month
of life using this assessment (55), our findings suggest an
earlier maturation of specific visual and motor abilities in

Figure 1. AA levels (�g/mL; mean � SEM) in rhesus monkey infant plasma.
Triangles, breast-fed infants (n � 14); squares, infants fed standard formula (n
� 14); circles, infants fed supplemented formula (n � 14). Graph depicts
average across three cohorts. Infants fed supplemented formula exhibited
higher AA values than breast-fed infants and infants fed standard formula.
Mother-reared infants did not differ from infants fed standard formula (F2,37 �
12.45; p � 0.001).

Figure 2. DHA levels (�g/mL; mean � SEM) in rhesus monkey infant
plasma. Triangles, breast-fed infants (n � 14); squares, infants fed standard
formula (n � 14); circles, infants fed supplemented formula (n � 14). Graph
depicts average across three cohorts. Breast-fed infants exhibited higher levels
of plasma DHA than infants fed both supplemented and unsupplemented
formula, and supplemented formula–fed infants had higher levels than standard
formula–fed infants (F2,37 � 61.35; p � 0.001).

Figure 3. Motor maturity cluster (mean � SEM) in rhesus monkey infants
fed supplemented formula (circles, n � 14) and standard formula (squares, n
� 13). Graph depicts average across three cohorts. Infants fed supplemented
formula exhibited higher scores than infants fed the standard formula (F1,21 �
11.83; p � 0.01), with differences being most pronounced on d 7 and 14 (group
� day interaction effect, F3,62 � 3.11; p � 0.05).
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infants fed the supplemented formula. In human infants, dif-
ferences in developmental quotient scores between LC-PUFA–
supplemented and –unsupplemented 4-mo-old infants were
noted, using a global neurodevelopmental assessment scale
(27, 60). The results in human infants are consistent with the
present findings: many of the Brunet-Lézine test items for
4-mo-old infants parallel those used in the primate examination
(e.g. head posture, visual attention, and tracking). Additionally,
the test ages of the subjects in the two studies are similar, as a
4-mo-old human infant is developmentally comparable to a
30-d-old rhesus infant (61). It is noteworthy, however, that in
studies comparing breast-fed and formula-fed human infants,
there were no differences in orientation and motor scores on the
NBAS (62, 63).

No effects of LC-PUFA supplementation were observed for
the activity and state control clusters. In contrast to the orien-
tation and motor maturity clusters, which assess specific visual
or motoric skills, the activity and state control clusters reflect
temperament and behavioral characteristics. In particular, two
of the items in the activity cluster (passivity, spontaneous

locomotion) measure the behavioral response to placement into
an empty cage. Familiar attachment or comfort objects (inan-
imate surrogate, human caretaker, and fleece blankets) are
absent or unobtainable during this portion of the examination,
implying that the infant is undergoing an enforced separation
experience. The nonhuman primate infant response to separa-
tion exhibits considerable individual variation, and is believed
to be (at least partially) under genetic control. Although envi-
ronmental factors can and do affect the behavioral response to
separation (64), this usually occurs in response to profound
manipulations such as rearing with mother versus rearing with
peers. In contrast, less potent manipulations of the early rearing
environment often fail to impact separation responses [e.g.
controllable versus uncontrollable environments (65); adoption
(66)]. Hence it is not surprising that environmental manipula-
tions such as formula supplementation with LC-PUFA do not
influence the response to separation.

The state control cluster represents the infant’s emotional
state during the assessment procedure. Although evidence
indicates that breast-fed infants exhibit more distress than
formula-fed infants during the NBAS (63) and during neonatal
examinations (67, 68), this may reflect a disparity in breast-
feeding and bottle-feeding styles and not LC-PUFA content of
feeds per se (i.e. breast-fed infants require more frequent
feedings and therefore may have been more hungry during
examination). There is no direct evidence linking LC-PUFA
intake with temperament characteristics in human neonates. In
monkeys, as in humans, breast-fed (mother-reared) infants are
fussier than bottle-fed (nursery-reared) infants. However, this

Figure 4. Orientation cluster (mean � SEM) in rhesus monkey infants fed
supplemented formula (circles, n � 14) and standard formula (squares, n �
13). Graph depicts average across three cohorts. Infants fed supplemented
formula exhibited higher scores than infants fed the standard formula (F1,21 �
5.10; p � 0.05).

Figure 5. Activity cluster (mean � SEM) in rhesus monkey infants fed
supplemented formula (circles, n � 14) and standard formula (squares, n �
14). Graph depicts average across three cohorts. No group differences were
detected on this measure.

Figure 6. State control cluster (mean � SEM) in rhesus monkey infants fed
supplemented formula (circles, n � 14) and standard formula (squares, n �
13). Graph depicts average across three cohorts. No group differences were
detected on this measure.

Table 4. Cohort results for neonatal assessment clusters

Cluster

Study cohort

Cohort 1 Cohort 2 Cohort 3

Motor maturity* 1.486 � 0.075 1.577 � 0.049 1.334 � 0.049
Orientation* 1.494 � 0.102 1.282 � 0.107 0.867 � 0.075
State control 0.097 � 0.035 0.109 � 0.045 0.338 � 0.061
Activity 0.806 � 0.098 0.805 � 0.108 0.656 � 0.072

Results are presented as mean � SEM.
* p � 0.05.
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contrast most likely reflects differences in infants’ response to
handling by humans rather than nutritional factors. The state
control cluster also appears to possess substantial genetic
underpinnings in rhesus monkeys: recent data (69) indicate the
values for this cluster at 14 and 30 d of age exhibit modest, but
statistically significant, heritabilities.

Examination of the data indicates that the differences be-
tween feeding conditions for both orientation and motor ma-
turity items appeared most pronounced during test d 7 and 14.
This pattern suggests an earlier maturation of specific visual
and motor abilities in the supplemented infants. Because un-
supplemented monkeys exhibited the expected maturational
increase in motor maturity and orientation on d 21 and 30 (47),
the disparity between groups was not as pronounced on those
days. This ceiling effect represents a limitation of the test
instrument. Although it is possible that the effects of LC-PUFA
supplementation dissipate by the third week of life in the
monkey infant, this cannot be determined without use of a
more challenging or sophisticated instrument. It is plausible to
consider that the persistent differences in plasma DHA and AA
levels in supplemented and unsupplemented infants until 5 mo
of age could potentially contribute to behavioral or cognitive
differences between these groups between ages 1 and 5 mo.

Owing to time and space constraints it was only possible to
study a limited number of animals in each year; hence the
requirement to conduct the project in three cohorts. Further-
more, sufficient animal numbers were not available from one
breeder to enable all infants to be obtained in one cohort. There
is a possibility that there may have been genetic differences
between cohort 1 and cohorts 2 and 3, which would influence
our test outcome. Nonetheless, cohorts 1 and 2 did not differ
significantly despite coming from different facilities. However,
the marked differences in the infants’ orientation and motor
maturity scores in cohort 3 require explanation. We hypothe-
size that the lower scores of cohort 3 monkeys may in part
reflect the outcome of unavoidable procedural differences in
the third year of the study. Unlike cohorts 1 and 2, which were
reared in dedicated nursery facilities, cohort 3 was raised for 4
to 11 d in a room containing monkeys of wide age ranges,
including adults and groups of juveniles. Several infants re-
ceived their d 7 assessment in that location. In addition, many
of the cohort 3 monkeys were tested on d 7 and 14 in the
morning immediately after overnight transport to the Pooles-
ville facility. These testing conditions were clearly less than
optimal. It should also be noted that although the comparison
did not reach statistical significance (p � 0.07), the animals in
cohort 3 exhibited a high value for the state control cluster,
indicative of more distress, relative to the values for infants in
cohorts 1 and 2. It is possible that the distress during the
examination related to the lower orientation scores exhibited
by y 3 infants. Previous studies (52) have demonstrated that
high arousal levels during the examination are associated with
low orienting abilities because of competing motor responses.

As expected, plasma concentrations of AA were higher in
the group which consumed supplemented formula containing
1.0 wt% AA in comparison to the group fed mother’s milk that
contained 0.2 wt% AA. We note that the plasma concentrations
of AA in the mother-reared and standard formula groups did

not differ although the standard formula contained only 0.04
wt% preformed AA. However, this result is consistent with the
plasma concentrations in phospholipid predicted by the Lands
equation (70) because the standard formula also contained
relatively high concentrations of linoleic acid (27.4 wt%) in
comparison to �-linolenic acid (2.0 wt%). With little compe-
tition for elongation and desaturation from �-linolenic acid and
virtually no feedback inhibition from EPA and DHA (both
nondetectable), plasma levels of AA were supported by linoleic
acid at levels higher than expected by examining the amount of
preformed AA alone. Supplementation of standard formula with
1.0 wt% DHA was not effective in equating plasma DHA levels
in formula-fed infants with mother-reared infants. However, sup-
plemented formula–fed infants exhibited higher plasma DHA
concentrations than did infants fed standard formula.

In summary, our findings add to a growing body of evidence
indicating a benefit in neurodevelopmental capabilities in in-
fants fed LC-PUFA–supplemented formulas. Because all ani-
mals were reared in identical environments, and the only
distinction between groups was in LC-PUFA availability, the
differences in motor and visual functioning in this study can be
directly and solely attributed to LC-PUFA intake. Future stud-
ies should address the effects of early divergence in LC-PUFA
intake on developmental outcomes by using more extensive
neurobehavioral test batteries, as well as assessments appro-
priate for older infants (49, 71–73).
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